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Small steady oscillations of a perfect incompressible liquid in a rigid vessel are 
examined. Although this problem was fairly thoroughly investigated [l - 31, the 

determination of high frequency oscillations and of their form in a liquid in ves- 
sels of arbitrary shape presents considerable difficulties. 
A simplified approximate method, whose accuracy increases at higher frequencies 

is proposed for solving this problem. It is shown on the example of several prob- 

lems that for practical purposes this method can be used for the full range of fre- 

quencies. Estimates of the lower and upper bounds are given in some of the pro- 

blems. 

1. The velocity potential @of free oscillations of liquid satisfies the Laplace equa- 
tion with boundary conditions [4] 

Aa-0 inV 
aa --- 
az “;;” 4 = 0 ( h2 = wy ) along 2, 

am an = 0 along S (1.1) 

where S is the wetted part of the vessel surface, 2 is the free surface of the unperturbed 
liquid, V is the region bounded by the surface s + 
f 2, 6XD / dn is a derivative along the normal to 
S, R is a constant of dimension length ( a character- 
istic dimension of the cavity), w is the angular osci- 

Y llation frequency, g is the acceleration of gravity, 
and the direction of the 02 -axis is opposite to that 
of the gravity force vector (Fig. 1). 

Let us establish a certain property of function @ for 
h + 00. Assuming that functions in Green’s formula 

Fig. 1 are equal to@,with the use of (1.1) we obtain 

Hence 
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(1.2) 

Let h + 00. It then follows from (1.2) that it is not possible to separate in r a finite 
volume in which the order of function B@ / 8.z would not be less than the order of this 

function at 2. Hence we write 

(1.3) 

where 6 is an arbitrarily small positive number. A similar reasoning yields the strong 
inequalities a@ 

max - I ! ax z<--6 
<max 2 

I I L =. 

aa 
max 3 z<_s <max g z=. 

i I I I 

(1.4) 

We note that (1.3) and (1.4) are consistent with the known solutions of particular pro- 
blems, which show that the free oscillation amplitude of liquid particles is attenuated 

with increasing distance from the liquid free surface. This attenuation is intensified with 

increasing oscillation frequency. For considerable values of h the second of conditions 
(1.1) with (1.3) and (1,4) taken into consideration can be approximated by condition 

- = 0 along C an 

where C is the boundary of surface 2. 

Let y. be the angle between the outward normal to S at points of boundary 12 and 

the OZ -axis, and let ddD / dv, be a derivative along the outward normal to C ( in the 

2 -plane). Condition (1.5) can now be written as 

(1.6) 

Using the method of separation of variables, we obtain the harmonic function $0 / &I 

in the form 
g = jj xipi (z, y) eXiZ (“i > O) 

is1 

(in accordance with (1.3) we discard the particular solutions which show no attenuation 
with increasing distance from the liquid free surface). From this we find 

05 

Substituting this expansion into the input Laplace equation and (1.6). we obtain 

Acp + xag, = 0 (I.81 

i)cp avo tg To + xp = 0 alongC (1.9) 

Here and in the following subscript i is omitted. The relationship between x and the 
dimensionless parameter h of oscillation frequency, derived by substituting (1.7) into 
the first of conditions (1.1). is 

h2 = xK (1.10) 
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The approximate solution of the three-dimensional input problem (1.1) of determin- 
ing the eigenvalues h* / R and eigenf~~tio~ @ (IF, y, z) can thus be derived for 

high L by solving the considerably simpler two-dimensional problem (1.8). (1.9) of 
finding the eigenvalues na and eigenfunctions cp fx, y). 

The following important conclusion can be reached on the basis of (1.1) - (1.7): the 
approximate solution of the considered problem depends at sufficiently high oscillation 

frequencies only on the dimensions and configuration of the liquid free surface boundary 

c in its ~~rt~bed state and on the angle y. between the Oz -axis and the outward 
normals to the vessel wetted surface S drawn through points of that boundary, and is 

independent of other geometric dimensions of the vessel. 

2. Let us define certain properties of the spectrum of eigenvalues of problem (1.8). 
(1.9). We limit the analysis to that part of the spectrum which corresponds to condition 
X, > 0 (we recall that it is precisely these solutions that are of interest). We note that 

the problem (1.8). (1.9) is unusual in that the parameter appears in both the equation 
and the boundary condition. 

Let us prove the following theorem: The eigenvalues %a of problem (1.8), (1.9) con 
stitute an infinitely increasing sequence 

lim xtr2 = 00 (2.1) 
k-=-u 

The eigenvalues P/R of problem (1.1) are known to posess this property &, 51. 
To prove the theorem we substitute in (1.9) for parameter x a certain positive arbit- 

rary number a such that 

For any o the eigenvalues x? (a) of problem (1.8). (2.2) are real and constitute a 
sequence in which [S] 

jLiIU_ 1ck2 (a) = 00 

It is shown in [S] that each of the ~2 (0) becomes ?@ (~),continuo~ly varying with the 
continuous variation of a from zero to infinity, and 

Xl% (0) = 0, xv2 (0) > 0 (k = 2,3, . . .); x,2(m)>O (k=1,2,3,. . .) 

Hence for every k, except possibly k = 1, there exists at least one (J for which the 
condition %k* (a) = o8 is satisfied. It is this condition which determines the eigenvalues 

“k2 of problem (1.8). (1.9). Since the asymptotic behavior of the kth eigenvalue is 
independent of the boundary condition ( is independent of a) [S], hence (2.1) is valid. 
We point out that with the decrease of angle y. every eigenvalue of problem (1.8), 

(1.9) along boundary C can only increase. 

3, The approximate solution of problem (1.1) can be obtained by solving (1.8) (1.9) 
if the oscillation frequencies are sufficiently high. It is shown below on the example of 
actual solutions of a few particular problems that in many practical calculations it is 
possible to consider all unknown frequencies without exception, as being sufficiently 

high. 
1. A cylindrical vessel with a flat bottom perpendicular to the generatrix of its side 

surface (Fig. 2). In this problem, which was considered in lJ3, 7, 81, the velocity 
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potential of the motions of liquid particles and the frequency parameters are determined 

by formulas 
CD = cp (r, Y) ch x (2 + W, ha = xRth xh (3.1) 

where x and cp (z, Y) are, respectively, the eigenvalues and the eigenfunctions of the 

problem as follows: 
Acp + xzrp = 0, acp I an = 0 along C (3.2) 

Solving this problem by the proposed approximate method for YO = x / 2 , from (1.8), 

Fig. 2 

(1.9) we obtain (3.2), and instead of (3.1) we have 

(I, = cp (I, y) eX”, a:! = xi{ (3.3) 

Evidently (3.1) can be approximated by formulas (3.3) provided 
that xh is sufficiently great. Hence, as expected the accuracy 

of the approximate method increases with increasing depth of liquid 
and oscillation frequency. In the case of a circular cylindrical 
cavity of radius R the accuracy of the determination of the first 

two frequency parameters il, and h, by (3.3) is within 5%. if 

h I K is equal 0. 81 and 0.49, respectively. 
2. An infinitely long circular channel with a horizontal axis partly 

filled with liquid. This problem was reduced in [9] to an integral 
equation subsequently solved numerically on a computer. The effect 

of the depth of liquid on parameters of the first three oscillation 
frequencies and on the shape of the liquid free surface at these fre- 
quencies is shown there in the form of curves for e = 0 (yO = n / 2). 

The solution relates to oscillations antisymmetric with respect to 
the vertical plane y = 0 drawn through the vessel axis. 

In this case ‘p = cp (y), and from (1.8), (1.9) we obtain 

&JJaya + x2’p = 0 

for y= * RsinTo 

From this we conclude that for antisymmetric oscillations with respect to plane y = 0 
the solution is of the form 

kn.- T,, Y \ 
‘pk = sin hk2$, ‘k2 = sirl $=F, k=1,2,... 

The results presented in [9] very closely agree with those derived from solution (3.4). 
while the curves showing the effect of depth of liquid on the third frequency parameter 
and on the free surface form for all three oscillation frequencies throughout the depth 

of liquid are, within drawing accuracy, exactly the same. 
3. An arbitrary ca\;ity filled with liquid whose free surface has the form of a circular 

ring. Let us write (1.8), (1.9) in a oolar system of coordinates 

(3.5) 

-$,,,+,,=a for r = RI, r = RZ (3.6) 

where R1 and Rg are, respectively, the radii of the inner and outer contours of the 
circular ring of the unperturbed liquid free surface. 

Setting ‘p, = x, (P) co9 n9 (P = xr) (3.7) 
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and taking into account (3.5). we obtain 

@x, 
p” -p+pf$+(p”-nqXn=O 

The general solution of this equation is 

x, = Cd, (P) + C,Y, (P) (3.8) 

where J, (p) and Y,, (p) are Bessel functions of the n th order of the first and second 
kind, respectively. 

Let us now consider the particular case in which for r = R, and r = R, the value of 
YO becomes equal to y1 and yz. respectively. The boundary conditions (3.6) then ass- 

ume the form 
%I 
dpQTo+X,=O for p=x&, p=~Rt (3.9) 

Substituting (3.8) into (3.9). we obtain 

a&, + a,&, = 07 (3.10) 

a11 = a11 (Tl, Hl) = 
1 

J,_1 Wl) - 2 J&h)] tg Tl + J, Wl) 

ala=au(~l, RI)= Y,_, @RI) -&Y,, @RI) tg 71 + y, (xR1) I I 
%a = $1 (Vn, w* %a = %P (Vav %I 

The condition for the determinan of system (3.10) to vanish yields the following equa- 
tion for the determination of the oscillation frequency: 

alla28 - a12a21 = 0 (3.11) 

In the particular case of a circular free surface 
of the unperturbed liquid (R, = C, = 0, &I = 

= ro, yp = y. and C, = 1) (3.8) and (3.11) reduce 
to the much simpler form 

x, = Jn (P) (3.12) 

0 30 60 8’ 

13 
n J,_lWO) - z n J (.wo)] tg TO + J, (xro) = 0 

Fig. 3 (3.13) 

a) A circular conical vessel. This problem is solved in [lo] on a computer with the 
use of the method of variations. The calculation results for the parameter of the first 
natural frequency are shown in Fig. 3 (solid line) together with data obtained with the 

use of (3.13). shown by the dotted line. 
b) A spherical vessel. The solution of this problem derived by the method described 

above for the case of an infinitely long circular channel is given in [9’J. The results for 
the parameters of the first three frequencies h,, h, and As for n = 1 are shown in Fig. 

4 (solid lines). The shape of the liquid free surface corresponding to these oscillation 
frequencies for 0 = 0 (yO = n/ 2) is given in Fig. 5. 

For comparison curves calculated by Eq. (3.13) are shown in Fig. 4 by dotted lines. 
The shape of the liquid free surface determined by (3.12). shown in Fig. 5. is in agree- 
ment with that obtained in [9]. 
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I I 

-0.8 -0.4 0 0.4 I? 

Fig. 4 Fig. 5 

4, The approximate solution derived here by the proposed method can be considered 
as exact in the case of a certain cavity whose Z and YO match those of the investigated 
vessel and the angle y between the outward normal to S and the Oz -axis satisfy con- 
dition 

(4.2) 

This condition in which &+J/ C% is a derivative in the direction of the outer normal to 
the line of intersection of surface s and the plane z = const (in a plane parallel to 1) 
was obtained by analogy to (1.9). 

let us now consider the particular case of circular free surface of the liquid and YO= 

= const. Taking into consideration (3.7) and (3,12) and also that tg y = -dz / 8r from 

(4.1) we obtain 

where ro is the radius of the liquid free surface. 
Thus the approximate solution of the problem of free oscillations of liquid in a rigid 

vessel with a circular free surface is, for y0 = conat the exact solution of a similar pro- 

blem of a cavity whose surface is a surface of rotation (4.2). In some cases it is possible 
to derive with the use of formula (4.2) fair estimates of the lnwer and upper bounds of 
free oscillation frequencies of a liquid with circular free surface in a vessel of arbitrary 

form, 
Let us, for example, find such estimates for the first-order frequency in the case of a 

spherical cavity with y. = 135” and n = 1. For v,, = 135” and y,, = 139” the dimension- 

less frequency parameters are, respectively, I. = 1.08 and h = 1.02. Using these data 
(PO = U.824 and p. = 0.743) we construct two cavities (4.2) and find that for YO = 1M’ 

the cavity is wholly contained in the spherical vessel, while for y. = 135” (with equal 
free surfaces) the latter fits into the cavity. Hence by virtue of the known theorem it is 
possible to state that 1.W < A < 1.08, where h is the sought frequency parameter. Tak- 
ing A = 1.05 results in an error in the determination of this parameter not exceeding 

3% 
The concept of comparing the sought frequency with that of free oscillations of liquid 

in vessels for which exact solutions are known (circular cylindrical cavities) was used in 
[ll] for determining the lower and upper estimates. The obtained estimates, however 
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apply only to cavities having surfaces of rotation of a particular form, viz., r = r. 
for - z \ n, (ho > 0) and r B ra for - z > ho. 

If one is interested only in finding whether the derived frequencies of free oscillations 

of liquid in a certain rigid vessel (without abrupt changes of curvature in itr meridian 
section) are above or below their true values, it is sufficient to compare the curvatures 

in the meridian section of a particular vessel with that defined by (4.2) for the same 70 

atz=0. If the curvature of the investigated vessel is greater (smaller) than that of 

the vessel defined by (4.2). the obtained frequency is to be considered as an upper (lower) 
estimate. 

The curvature li of the meridian section of the vessel defined by (4.2) can be calcu- 
lated by formula 

rob’== ifr- 
i 

n"tgr, W-0 

sin To cos To sin y. cosz To (4.3) 

which is obtained by way of comparing Eq. (4.1). differentiated with respect to the 
meridian arc, with the Laplace equation (3.5) in which function v has been eliminated 

by using (4.1). 
Let us, for example, calculate the curvature (4.3) for y0 = 135” . We find it to be 

greater than the curvature of the meridian section of a cone and smaller than that of a 

sphere. Hence the calculated frequency for the sphere is excessive, while that for the 

cone is deficient. This conclusion fonforms to the curves in Figs. 3 and 4. 
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Euler equations of the three-dimensional motion of a perfect in~ompresslble 
fluid, linearized for a nearly stationary flow are considered and the class of sta- 
tionary flows for which these linearized equations admit exact explicit solutions 

is indicated. The analysis of derived equations shows that in some stationary 

flows the perturbation buildup considerably differs from that obtaining in cases 
generally considered in the theory of hydrodynamic stability: there appears an 

infinitely great number of unstable configurations, the flow pattern is difficult 
to predict (since an approximate determination of perturbation development with 
time necessitates a rapidly increasing amount of information about initial con- 
ditions, etc), These differences are due to the different geometry of stationary 

flows. In the recently constructed models of stationary flows the assumption is 

made that a fluid particle in motion stretches into a filament or ribbon whose 

length exponentially increases with time, while in the usually considered flows 
the length is assumed to be a linear function of time. In two-dimensional flows 

the phenomenon of exponential stretching of particles is impossible. It is shown 
that this is, also, impossible in three-dimensional flows in which the vectors of 

velocity and viscosity are not collinear. 

1. The linsrrired Euler spurtion. The rhortenad equation, 
Let us write Euler’s equation in the form of a vortex equation 

ar :dt = {v,r] (P = rot v) (1.1) 
where the Poisson’s bracket of the two vector fields is defined by the condition 

0 [a,bf = D&a - DaDh 

in which I), denotes integration in the direction of field q.Let us consider a small 
perturbation u of the stationary flow V. Let s be the vortex perturbation field: rot (V f 

j- u) = f + S. Equation (1.1) linearized in the neighborhood of flow v is of the 
form &/at = {v,s} + (rot-is,c) (1.2) 

The operation rot-l is understood as the restitution of a nondivergent vector field over 


